Monday, January 27, 2014

"Avoid the tyranny of precision" ... a high school teacher asks us to teach science with stories and sex and violence and laughter --- "emotional connection" -- "we have to convince our audience that what we are talking about matters."

Sometimes you have to lie in order to tell the truth.

-  Mies van der roe

Mies van der Rohe Society

Ludwig Mies van der Rohe
Mies Mailings. Email Address. Mies Everywhere. 10 W. 35th Street; Suite 1700; Chicago, ... 2012 Mies van der Rohe Society. the Mies van der Rohe society.

Leave out the jargon

set aside the seriousness.

make me laugh

Let me tell you a story.


Now, the story that I start telling my kids, it starts out like a horror story. Once upon a time there's this happy little bacterium. Don't get too attached to him. Maybe he's floating around in your stomach or in some spoiled food somewhere, and all of a sudden he starts to not feel so good. Maybe he ate something bad for lunch, and then things get really horrible, as his skin rips apart, and he sees a virus coming out from his insides. And then it gets horrible when he bursts open and an army of viruses floods out from his insides. If -- Ouch is right! -- If you see this, and you're a bacterium, this is like your worst nightmare. But if you're a virus and you see this, you cross those little legs of yours and you think, "We rock." Because it took a lot of crafty work to infect this bacterium. Here's what had to happen. A virus grabbed onto a bacterium and it slipped its DNA into it. The next thing is, that virus DNA made stuff that chopped up the bacteria DNA. And now that we've gotten rid of the bacteria DNA, the virus DNA takes control of the cell and it tells it to start making more viruses. Because, you see, DNA is like a blueprint that tells living things what to make. So this is kind of like going into a car factory and replacing the blueprints with blueprints for killer robots. The workers still come the next day, they do their job, but they're following different instructions. So replacing the bacteria DNA with virus DNA turns the bacteria into a factory for making viruses -- that is, until it's so filled with viruses that it bursts. But that's not the only way that viruses infect bacteria. Some are much more crafty.When a secret agent virus infects a bacterium, they do a little espionage. Here, this cloaked, secret agent virus is slipping his DNA into the bacterial cell, but here's the kicker: It doesn't do anything harmful -- not at first. Instead, it silently slips into the bacteria's own DNA, and it just stays there like a terrorist sleeper cell, waiting for instructions. And what's interesting about this is now whenever this bacteria has babies, the babies also have the virus DNA in them. So now we have a whole extended bacteria family, filled with virus sleeper cells. They're just happily living together until a signal happens and -- BAM! -- all of the DNA pops out. It takes control of these cells, turns them into virus-making factories,and they all burst, a huge, extended bacteria family, all dying with viruses spilling out of their guts, the viruses taking over the bacterium. So now you understand how viruses can attack cells. There are two ways: On the left is what we call the lytic way, where the viruses go right in and take over the cells. On the [right] is the lysogenic way that uses secret agent viruses.
But here's the thing. There are plenty of people in science education who would look at this and say there's no way that we could ever give that to students, because it contains some language that isn't completely accurate. For example, I told you that viruses have DNA.Well, a very tiny fraction of them don't. They have something called RNA instead. So a professional science writer would circle that and say, "That has to go. We have to change it to something much more technical." And after a team of professional science editors went over this really simple explanation, they'd find fault with almost every word I've used, and they'd have to change anything that wasn't serious enough, and they'd have to change everything that wasn't 100 percent perfect. Then it would be accurate, but it would be completely impossible to understand. This is horrifying.
You know, I keep talking about this idea of telling a story, and it's like science communication has taken on this idea of what I call the tyranny of precision, where you can't just tell a story. It's like science has become that horrible storyteller that we all know, who gives us all the details nobody cares about, where you're like, "Oh, I met my friend for lunch the other day, and she was wearing these ugly jeans. I mean, they weren't really jeans, they were more kind of, like, leggings, but, like, I guess they're actually kind of more like jeggings, like, but I think — " and you're just like, "Oh my God. What is the point?" Or even worse, science education is becoming like that guy who always says, "Actually."Right? You want to be like, "Oh, dude, we had to get up in the middle of the night and drive a hundred miles in total darkness." And that guy's like, "Actually, it was 87.3 miles." And you're like, "Actually, shut up! I'm just trying to tell a story."
This needs to stop, and I wish that the change could come from the institutions at the top that are perpetuating these problems, and I beg them, I beseech them to just stop it. But I think that's unlikely. So we are so lucky that we have resources like the Internet, where we can circumvent these institutions from the bottom up. There's a growing number of online resources that are dedicated to just explaining science in simple, understandable ways. I dream of a Wikipedia-like website that would explain any scientific concept you can think ofin simple language any middle schooler can understand. And I myself spend most of my free time making these science videos that I put on YouTube. I explain chemical equilibrium using analogies to awkward middle school dances, and I talk about fuel cells with stories about boys and girls at a summer camp. The feedback that I get is sometimes misspelled and it's often written in LOLcats, but nonetheless it's so appreciative, so thankful that I know this is the right way we should be communicating science.


Here is an example of sex and chemistry

No comments:

Post a Comment